翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

inbreeding depression : ウィキペディア英語版
inbreeding depression

Inbreeding depression is the reduced biological fitness in a given population as a result of inbreeding, or breeding of related individuals. Population biological fitness refers to its ability to survive and reproduce itself. Inbreeding depression is often the result of a population bottleneck. In general, the higher the genetic variation or gene pool within a breeding population, the less likely it is to suffer from inbreeding depression.
Inbreeding depression seems to be present in most groups of organisms, but varies across mating systems. Hermaphroditic species often exhibit lower degrees of inbreeding depression than outcrossing species, as repeated generations of selfing is thought to purge deleterious alleles from populations. For example, the outcrossing nematode ''Caenorhabditis remanei'' has been demonstrated to suffer severely from inbreeding depression, unlike its hermaphroditic relative ''C. elegans'', which experiences outbreeding depression.
==Mechanisms==

Inbreeding (i.e., breeding between closely related individuals) may on the one hand result in more recessive deleterious traits manifesting themselves, because the genomes of pair-mates are more similar: recessive traits can only occur in offspring if present in both parents' genomes, and the more genetically similar the parents are, the more often recessive traits appear in their offspring. Consequently, the more closely related the breeding pair is, the more homozygous deleterious genes the offspring may have, resulting in very unfit individuals. For alleles that confer an advantage in the heterozygous and/or homozygous-dominant state, the fitness of the homozygous-recessive state may even be zero (meaning sterile or unviable offspring).
An example of inbreeding depression is shown to the right. In this case, ''a'' is a recessive allele which has negative effects. In order for the a phenotype to become active, the gene must end up as ''aa'' because in the geneotype A''a'', the A takes dominance over the ''a'' and the ''a'' does not have any effect. Due to their reduced phenotypic expression and their consequent reduced selection, recessive genes are, more often than not, detrimental phenotypes by causing the organism to be less fit to its natural environment.
Another mechanism responsible for inbreeding depression is the fitness advantage of heterozygous, which is known as overdominance. This can lead to reduced fitness of a population with many homozygous genotypes, even if they are not deleterious. Here, even the dominant alleles result in reduced fitness if present homozygously (see also hybrid vigour).
Currently, it is not known which of the two mechanisms is more prevalent in nature. For practical applications, e.g. in livestock breeding, the former is probably more significant – it may yield completely unviable offspring (meaning outright failure of a pedigree), while the latter can only result in relatively reduced fitness.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「inbreeding depression」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.